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SUMMARY

Equations which include freedom in trim are derived for hydrodynamic
impact of a non-chine-immersed, prismatic float forebody having a V-bottom
and a transverse step. These equations are an extension of previously
published fixed-trim theory, and a method of solution is indicated by
which time histories of vertical, horizontal, and angular displacement,
velocity, and acceleration can be obtained.

Comparisons of specific solutions of the equatione with corresponding
fixed-trim solutions are presented. The trends.and deviations noted are
similar to those exhibited by a like comparison of experimental data for .
free- and fixed-trim impacts.

INTRODUCTTION

Previously published hydrodynamic impact theory (references 1 to 3)
has been based on the concept that the flow about an immersing seaplane
float or hull is a two-dimensional phenomenon occurring in transverse
planes fixed in space and oriented normal to the keel. The total force
on the float ieg obtained by summing the reactions in the individuval flow
planes in contact with the float and spplying an aspect-ratio correction
factor to account for the end-flow losses which exist in three-dimensional
flow. This theory has made use of the simplifying assumption that the
trim remains fixed throughout the impact. Experimental checks of this
fixed-trim theory for both model and full-scale hulls have been presented
in numerous reports and some evaluation of the empirical factors involved
has been conducted.

The present investigation was initiated in order to obtain a method
for determining the effect of freedom in trim on loads, moments, and
motions during hydrodynamic impacts of a non~chine-immersed, prismatic
float: forebody having a V-bottom and a transverse step. As in the pre-
vious theoretical presentations the wing 1lift was assumed to be equal
to the model weight and the aerodynamic moments were neglected in order
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to simplify the problem, although they might have had an appreciable
stabilizing effect.

The present paper is primarily concerned with the derivation of
equations describing the vertical, longitudinal, and angular motions and
accelerations of the previously described float during hydrodynamic
impact. It also presents comparisons of numerical solutions of these
equations with theoretical fixed-trim loads, moments, and motions under
identical initial conditions, and a comparison is made of experimental
free-trim and fixed-trim data.

SYMBOLS

A hydrodynamic aspect ratio (tan B/tan T)

a distance between center of gravity and qtep , parallel to keel
b distance between center of gravity and steé , normal to keel
F hydrodynamic force

Icg moment of inertia about center of gravity (pivot point)

K constant (%pﬁ‘(ﬁ))

1 wetted keel length

Mg moment &bout center of gravity (bow-up moment is positive)
Mg moment about step

me virtual mass of float

m, mass of fluid in a flow plane

) accelerstion of center of gravity, parallel to keel
8 distance of flow plane forward of step, pa:r;a.llel to keel

t time after contact

v velocity ’

».

horizontal acceleration of center of gravity
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X horizontal displacement of step from contact point
Y vertical acceleration of center of gravity
¥ draft at step
7 acceleration of center of gravity, normal to keel"
Z penetration of float ipto a Tlow plane
B angle of dead rise
7 flight-path angle (}an“l ?{)
: / b'd
p mass denéity of water
T _ trim, raedians, except as noted
F(B) dead-rise function
o(A) ' "aspect-ratio correction factor
Subscripts:
o condition at time of water contact
n direction normal to keel
D direction parallel ta keel

Where units are not specified any consistent system of units may be
used.

Dots over x, ¥y, 2, and 7 dIndicate differentiation with respect
to time.

METHOD OF ANALYSIS

Physical concepts.~ The physical. concepts on which this analysis is

based are discussed in detail in references 1 and 3, in which the solu-
tion is restricted to fixed positive trim., Briefly, the theory discussed
in these references was based on the concept that the primary flow about
an immersing seaplane float or hull occurs in transverse planes which
were considered fixed in space and oriented perpendicular to the keel.
Figure 1 is a sketch of a prismatic float immersing at positive trim.

e e A e e e s = g = b~ e = £ = e
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A given flow plane is indicated in figure 1(a) at a distance s forward
of the step and the penetration of the float into this flow plane is
represented by z. The motion of the fluid in each plane was treated
as’a two—dimensiongl phenomenon independent of the other flow planes.

The total force on the float 1is obtained by integrating the reactions
of the fluid in the individual flow planes in contact with the float.
This force is reduced by the application of an end-flow (aspect-ratio)
correction to account for the losses vhich exist in three-dimensional
flow. The effects of buoyancy and viscosity are neglected, since in an
impact they are normally small in comparison with the inertia forces.
A 1ift force equal to the weight of the seaplane is also assumed to act
throughout the impact.

These concepts are followed in the present analysis except for the

modifications necessary to introduce freedom in trim. In order to

introduce freedom in trim, the flow planes are assumed to rotate about

- instantaneous centers of rotation at their intersection with the float

keel. Thus, the planes are permitted to maintain their orientation
normal to the keel and at the same time to have no translation in space
along the line of the keel.

Equations of motion.- In this analysis both the float being con-
sidered and the forces applied to it are symmetrical about a vertical

plane through the keel so that the float motions can be resolved as a

case of plane motion. The equations of motion for the float (see
fig. 1(2)) can then be written as .

Fp = ~mpS ' (1)
Fp = A (2)
Moy = Togt (3)

In equations (1) and (2) the quantities S and Z are the com-
ponents of the center-of-gravity acceleration which are, respectively,
parallel and perpendicular to the keel. These accelerations can be
expressed in terms of the horizontal and vertical components of the step
acceleration and the center-of-gravity accelerations relative to the
step in the following manner: :

S=XcosT -y sin T - at@ - bT (%)
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and

Z =ycos T+ X sin T + bT2 - ar (%)

’

Since the viscous forces of the fluid are considered small enough
to be neglected in this analysis, there is no force on the float in the
direction parallel to the keel and hence Fp 1is equal to zero. There-

fore, from equations (1) and (%) the following expression can be obtained:
0=-mp(¥ cos T - ¥ sin 7 - &7° - bT) (6)
This equation can then be solved to obtain an expression for X:

e Yy sin T aTe br
X = + +
cos T cCo8 T CO8 T

(7)

Now consider equation (2), the normal-force equation. The normal
force on the float is the sum of the forces exerted by the individual
flow planes reduced by an end-flow-loss correction factor. The typical
flow plene illustrated in filgure 1l(a) is at a distance s forward of
the step and has a width ds parallel to the keel. The float has made
a penetration z into the plane. From the analysis of reference 3,
the virtual mass of fluid in this flow plane 1is

my = Kz2ds _ (8)
where
K = %‘-pﬂF(B) ' (9)

In accordance with the assumptions, the reaction of the fluid in
the plane is the time derivative of the momentum so that

- mi) - & (kaPas £) = K(s25 + 2082)as (10)
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The normal force acting on the float can now be obtained by inte-
grating over the wetted length and multiplying by the aspect~ratio cor-

rection factor

=1 in Tt
F, = ¢(a) j: dF = Ko(a) f /e (222 + 222°)ds (11)

where F, can be seen to be a function of z, %, and z.
tities may be established as follows.

It can be seen from figure 1(a) that the penetration

These quan-

z of the

Tloat into a given flow plane can be written as a function of the vari-

ables y, 8, and T, each of which is a function of time. Thus
8 sin
Zz = y - T (1‘2)
cos T cos T
Differentiation of 2z with respect to time gives
. & 8 sin T y} sin T 8T
Z = - 73 - 5 (13)
cos T cos T coscT coseT
and e further differentiation gives
. y 8 sin T, yrsin T 8T v N 2y+231n27 287%8in T .
Zz = - - -
cos T cos T cos2T cosT cos T cos3T cos3t
oyi%sin T 23%
- (14)

C082T 0082T
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The derivatives 8 and ¥ are now expressed in terms of x, Y,
and T. In accordance with the assumptions, the velocity & is con-
stant over the wetted length and is simply equal to the negative of the
float tangential velocity Vp; thus, from figure 1(b),

é:..vp =yseinT-Xcos T : (15)

The derivative of this expression is

='}°rsin'r-£cos-r+3'r+c08'r+}'c'}sin'r

!
&6

Introducing equation (7) gives

-

B=yr cos T+ xT 8in T - aT® -~ bT (16)

Equations (12), (13), and (14), with 8 and 8 replaced by eque-
tions (15) and (16), respectively, are now introduced into equation (11).
Integration is then performed to obtain the normal force in terms of
motions of the step. Substituting the resulting expression for normal
force into equation (2) , where 7 1in this equation is replaced by equa-
tion (5), gives the following equation for motion of the center of gravity
normal to the keel:

Ko(A)
12 sin3“r cos5 T

yl*Er'(l} gin3r cos T - sin T cos T) + T2(16 sinlr -

6 sin®T + 2i] + y3l'_l'()+ sinT cose'r) + T4 sin3T cos?T) +
:r2(lla gin37 cos®T) + xT(20 sinttT cos?7) + y1(12 sin T cos3T -

20 sin T cos5'rﬂ + y2E2 sin®t cosl"r(ir cos T + X sin T)e:,} =

¥ br sin T . .. aregin
~mf£ g + + ‘trr2 - aT + ——————T) (17)
o

8 T cos T cos T

e e e wm e e m o ————— et e ——— - o . e T
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A

In order to solve the third equation of motion, the total moment
exerted by the individwal flow planes about the center of gravity must
be determined. To make an approximate correc¢tion for end-flow losses
this moment is multiplied by the aspect-ratio factor @(A), where the
assumption is made that this over-all correction factor can be applied
to the moment as well as to the normal force. Equation (3) may thus be
written as ’

Mog = 9(A) f (s - ) = Iog7 (18)
vhich, with the use of equation (11), becomes

y/ein T .. . ,
Meg = Ko(A) j(; (z€z + 222)s ds - aF, (19)

Proceeding as with the normal-force equation gives the following equation
for angular motion about the center of gravity:

Kp(A = ]
ole) y5[£(5 gindt cos T - 2 sin T cos T) + T2(25 sinkT -
60 sin*r cos?T

19 §1n21- + 6ﬂ + yl“g'(5 S:Lng.'r cos®r) + T(5a sin®T cos T -

20a ;inhT cos T + 5b sin3T coseT) + T9(35a sin3T - 8% sindT -

10a sin:ﬂ + x7(25 8in®T cos®r - 35 sin?t coshT) + y7(15 sin T cong -
35 sin T cos5%£] + y3 |-¥(20a sin3 cos®7) -'{(zoab:sinhr cos2T) -
72(20a2s1n’ T cos2T) - xF(100a sindT cosdT) + y(40a sin?r cosdT -

100a sinr cos371) + 20 sin®r cosuT(& cos T + x sin T)%] -

ye[g?a sin3T coshT(i cos T + x sin T)%j}' = Icg¥ ’ (20)
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Equations (7), (17), and (20) are the equations of motion for the
float end involve the three unknowns x, y, and T. These equations
can be solved numerically for the time histories of the three variables
and their derivetives; see appendix A for a step-by-step iteration pro-
cess. Involved in the solution of these equations are the dead-rise
function (see equation (9)) and the aspect-ratio correction factor (see
equation (11)), which are discussed in the subsequent section.

Factors F(B) and ¢(A).- In order to perform the numerical solu-
tions expressions must be obtained for the dead-rise function F(B) and
the aspect-ratio correction factor ¢@(A) contained in the normal-force
and moment equations. :

An expression for the dead-rise function F(B), which gives the
variation of the effective two-dimensional fluid mass with dead rise,
was glven by Wagner in reference 4 as

< 2
F(B) = (ﬁ - )
2
which is equivalent to [}(Bi] of reference 3.

Although this relationship has not been‘eXperimentally verified
for impacts of floats having low dead-rise angles, it has been found
to be in -substantial agreement with test data obtained with floats

)
of 22% to 40° angle of dead rise (see reference 3).

On the basis of experiments with vibrating plates in water (refer-
‘ence 5), Pabst derived the followlng aspect-ratio expression for gpproxi-
mating the three-dimensional virtual mass from the virtual mass computed
on & two-dimensional basis:

N )

1
cP(A)=1--ﬁ

where A 1s the aspect ratio of the equivalent vibrating plate., If
this reduction in the virtual mass is assumed to be determined by the
shape of the intersected area in the plane of the water surface, then
the application of Pabst'!s data to V-bottom floats results in the
expression

tan T

o) =1 -5




10 NACA TN 2698

THEORETICAI RESULTS

Reduction to fixed trim.- The free-trim eguations were derived
from the same basic assumptions as the fixed-trim equatlions; they must,
therefore, be reducible to the fixed-trim equations. This reduction is
accomplished in appendix B by considering the trim to be a constant
instead of a varieble, so that the terms containing T and T drop
out. It is then demonstrated that equations (17) and (20) reduce to a
form 1dentical with the equations for normal force and step moment in
references 1 and 6, respectively. Equation (7) is also shown to reduce
to a simple fixed-trim relation.

Comparison of free- and fixed-trim theoretical solutions.- In order
to indicate the effect of freedom in trim both free- and fixed-trim
theoretical solutions were made for a typical hull for three different
sets of landing conditions. The dimensions and inertia values of the
full-scale float considered are given in table I. The theoretical
initial conditions for the three impact cases treated are listed in
table II. (The experimental values also listed in table II are discussed
in a subgsequent section.)

Figure 2 presents time-history comparisqne of solutions of the
free-trim equations with fixed-trim solutions for the three cases of
theoretical initial conditions given in table II. The quantities
plotted are the vertical and angular displacements, velocitles, and
accelerations.

The free-trim solutions were obtained by the method described in
appendix A and the fixed-trim solutions were obtained by the method of
refererice 7. The so-called ¥ curves for fixed trim shown in the plots
were obtained by using equation (3) but with the fixed-trim total moment
from equation (B7) instead of the free-trim moment. These T curves
can be interpreted as a measure of the applied moment since, from equa-

M

tion (3), ¥ = —=£ and Icg is the constent value for the free-trim
Icg

float.

EXPERIMENTAL RESULTS

To demonstrate the effects of freedom in trim experimentally, both
free- and fixed-trim tests of a float model were made in the Langley
impact basin. The measured motions are compared in this section.
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Wo direct comparison between the experimental and theoretical
results can be made because of differences between the float used in
the tests and that assumed in the theory. The float used in the tests
had a pointed step, flared chines, and an afterbody; whereas the theory
applies to a float forebody having a transverse step and an infinitely
wide V-bottom. Since these float tests represent the only free-trim
impact-basin data now available, however, the results are included
herein for the qualitative comparisons that can be made.

Apparatus and instrumentafion.— The Langley impact basin and testing
procedure are described in reference 8. Pertinent dimensions of the
float model used in the experiments are given in table I. This model,
except for the differences outlined previously, is a %--scale model of

the float considered in the theoretical sdélutions.

In the free-trim tests the float model was attached to the dropping
linkage of the launching carriage at two main pivot points; these sup-
ports were on a transverse line which passed through the point corre-
sponding to the center of gravity of the.alrplane from which the float
was patterned. For the fixed-trim tests a third support point was

-located about 20 inches aft. of the main supports on the longitudinal
center line of the float.

For the free-trim tests the model was supported only at the two
main points and was held at fixed trim until just prior to contact by
means of a locking mechanism. After contact the model was free to
rotate in pitch about the main supports over a trim range of -6.5°
to 22.5°. Beyond those limits angular displacement of the float was
regtrained by two shock struts which were coupled to the float by means
of telescoping tubes, one 60 inches forward and one 60 inches aft of
the main pivots. The buffer action of the shock struts extended the
trim range sbout 5° in each direction before a stop was reached.

Two strain-gage accelerometers of the same type of construction
were electrically connected to obtain angular acceleration directly.
These accelerometers were located on a longitudinal line passing through
the axis of rotation and at a distance of 6 feet forward and 6 feet aft
of this axis, A control-position transmitter was adapted to the equip-
ment to measure angular displacement., )

A standard NACA three~component accelerometer was used to obtain
the vertical component of acceleration of the float. It had a natural
frequency of 21 cycles per second and a critical damping of 0.8. Other-
wise, the standard instrumentation as described in reference 8 was used.

Comparison of free- and fixed-trim experimental results.- Figure 3
presents the comparison of free-trim and fixed-trim experimental results
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for cases I and 1T listed in table IT. Again vertical and angular
displacements, velocities, and accelerations are compared; the values
shown apply to full-scale conditions.

It can be noted in table II that the initial vertical velocity of
the fixed-trim run of case I was higher than that of the corresponding
free-trim run. The time histories for the fixed-trim run were there-
fore adjusted as follows to give more comparable results in figure 3(a).
Since the initial flight-path angles of the two runs were not greatly
different and the initial trims were the same, the veloclty time history
of the fixed-trim run was scaled by the ratio of the free-trim initial
velocity to the fixed-trim initial velocity, the acceleration time
history was scaled by the square of this ratio, and the time was scaled
by the reciprocal of the ratio. No corresponding adjustments were made
for case II. ’ -

DISCUSSION

Initial conditions.- Table II presents the initial conditions for
both the free-~ and fixed-trim theoretical solutions and also for the

free- and fixed-trim test runs. The test runs were made with a %»-scale

model but the initial conditions are given in terms of full-scale values.

The initial conditions for the theoretical golutions of cases I._
and II were choseh to correspond to the free-~trim experimental runs of
those cases to make the results as comparable as possible. The experi-
mental fixed-trim runs were chosen, from among those available, to
correspond as closely as possible to the respective free-trim runs.

The initial conditioné for case ILI represent a more severe impact
such as might occur in a second or third contact during a landing rum
or in a contact against the flank of an advancing wave.

Case I.- The first set of conditions treated (case I) represents
an impact at moderate initial values of flight-path angle and trim. In
both the theoretical (fig. 2(a)) and the experimental (fig. 3(a)) results,
the vertical motions, trim, and angular velocity for the free-trim con-
dition differ only slightly from the corresponding motions in the fixed-
trim condition. The only angular acceleration or moment of any size is
exhibited by the experimental free-trim rum (t ® 0.15), but this moment
is associated with the immersion of the flared chines. Thus, for the-
initial conditions of case T no significant difference appears to exist
between fixed- and free-~trim impacts. -




NACA TN 2698 x : 13

Cage II.~ Case II has approximately the same initisl flight-path
angle as case I but has a higher initial trim. The vertical motions
for the free-trim condition are again observed to approximate those
for the fixed-trim condition in both the theoretical (fig. 2(b))} and
experimental (fig. 3(b)) curves. This impact, however, resulted in an
appreciable change of attitude and a moderate nose-down moment.

The initial trends of the theoretical and experimental angular
motions are similar. However, the immersion of the flared chines prob-
ably caused large loads on the float forward of the center of rotation
and therefore a large nose-up moment as indicated by the positive peak
of the experimental T curve. These loads would result in large
deviations of the subsequent motions of the test float from those of
the float assumed in the theory.

Case ITT.- Case III represents a high-flight-path-angle, low-trim
condition such as might occur in an impact on .the flank of a wave. The
curves represent the "effective" values referred to the inclined plane
of the water surface as In reference 9 and are analyzed as an extreme
condition of smooth-water impact.

In this case, the deviations between the fixed-trim and free-trim
results are much greater than those previously described; freedom in
trim in fact reduces appreciably the maximm values of ¥ and 7. The
large values of negative vertical velocity of the free-trim solution
compared with the fixed~trim solution late in the impact appear to be
consistent with the large values of trim attained.

Probably the most serious effect observed for the free-trim solu-
tion is the high trim and large positive value of angular velocity at
the end of the iImpact. This could result in a stalled condition between
impacts or could lead to extreme initial conditions for a subsequent
impact. However, these conditions should be somewhat restricted by the
presence of an afterbody and by aerodynamic moments not taken into
account by the present theory.

No impact-basin date have been obtained for conditions as severe
as those in this case. An indication of the motions to be expected,
however, can be obtained from an impact of a four-engine flying boat,
the date for which have not been published. The initial conditions for
this impact were substantially the same as those of case IIT and the
resulting motions were also very similar. Of particular interest in
this seaplane impact is the increase in trim from a small initial value
(about 3°) to about 15° with positive angular velocity at the time of
exit from the water. The acceleration records contained large oscilla-
tions, due probably to structural vibrations, which rendered them
unsuitable for direct comparison with the theory; however, the peak
values of the faired curves for both ¥ and T agree roughly with the
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corresponding values for the free-trim solution of case III. Thus,
although direct comparison is not practicable, this flying-boat impact
indicates that the initial conditions for case III are within the
practical range and that the theoretical results which are obtained
for this case are at least consistent with flight experience.

General discussion.- In general, for cases I and II, the theoreti-
cal free~trim vertical motions ‘epproximste the fixed-trim vertical
motions to gbout the same degree as was found experimentally. Also,
the trends of the theoretical angular motions are similar to those of
the experimental data except where deviation is to be expected because
of differences in body shape. Thus, for impacts having moderate initial
conditions the theoretical and experimental free-trim results appear
to be in agreement.

For the more extreme initial conditions of case III, there is, of
course, more deviation of all variables from the fixed-trim solution.
The deviations which occur are, however, consistent among themselves
and with general experience., Also, the reductions of meximum applied
load and moment which occur are to be expected.

CONCLUDING REMARKS -

Equations of motion are derived and presented for free-trim hydro-
dynamic impact of a V-bottom, transverse step, prismatic float forebody.
The equations are an extension of previcusly published fixed-trim hydro-
dynamic impact theory and are chiefly based on the same concepts and
assumptions., A method of solution of the equations is also presented
which gives the results as time histories of vertical, horizontal, and
angular displacement, velocity, and acceleration.

The free-trim equations are shown to be reducible to the fixed-
trim case. Moreover, camparisons of specific solutions of the free-
trim equations with fixed-trim solutions for the same initial conditions
and also with some experimental data have shown that the computed
results are reasonable. The free-trim solutions and experimental data
exhibit similar trends and deviations from the fixed-trim case, and
changes of attitude and applied moment are consistent with previous
experience. -

Although these facts do not completely validate the equations,
they at least indicate that reasonable and consistent results can be
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obtained by their use., Further experimental investigation
provide a better evaluation of the method.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., February 13, 1952

e e e e o e e e o e e e ————
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APPENDIX A
METHOD OF SOLUTION

Before the numerical solution can be performed, equations (17)
and (20) must be transformed into forms better suited to the method of
solution used. Equation (7) is already in the form required for /
solution, :

Equation (17) can be rewritten as

AT + By = C (A1)
and equation (20) as
D.'1: + E.y'. =F (Aa)

where

A - Ko(A) l__zl‘(lt sin3T cos T - sin T cos T) + y3(4b sin3T cose’E)]

+
-12 sin3-r cos5'r

mbsin'r ’
Ry (43)

B - Ko(A) Er3(1+ 8inr cos®T) . mne

12 sin3t cosoT cos T

(Ak)
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- Ko(a) 72(16 ;th _”6 infr 4+ 2)
° 12 gin3r cosdt {Yk[ ( ’ i ]-.-l-

¥3 '1.'2()4-8. sin3T coseT) + x7(20 sinkr cos2r) + yr(12 sin T cos3t -

20 sin 7T C°55T_)] + ¥2 |12 8in?r costr(§ cos T + x sin "')2]} -

mf<3ff’_iil ; b"r2> (85)

cos T

p - Koa)
' 60 sin*r cosd+

E5(5 sin3t cos T - 2 sin T cos T) +

y4(5a. 81n°T cos T - 20a sinkt cos T + 5b sin3T coseT) -

y3(20ab sinh'r cosz'rl__, - Icg

Ko(a)
E = n
60 sin T cos

5 El"(5 sin®T cos2T) - Y3(20a sin37 COSETEJ (A7)
T . . .

(46)
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F = - Ko(a) y2 E2(25 sinr - 19 sin®T + 63 +
60 sintr cosdt

Yh%(3% sin3T - 8% sin’T - 10a sin T) + x7(25 sin®r cos®T -
35 gin®T cosh"l’) + ir:r(15 gin T cos3T - 35 sin T cos5'r) -
y3E2(20aesin4T cosz’r) + x7(1008 sin®T cos®T) - yr(40a sin®T cosdT -

100a sin’r cos37) - 20 sin®T coshﬂr(ir cos T+ X sin -r){] -

:{2@0& gin3T cosl"'r(& cos T + x sin T)jz:l} (A8)

Fquations (Al) and (A2) can be solved simultaneously to give

Y = r-x (A9)
AR

- DC
- DB
and

- EC - B¥ (410)
EA - BD

which, together with equation (T),

.o ysinT za:r‘2 bT
X = + +
cos T cos T CO8 T

are the equetions to be used in the numerical solution.
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The numerical solution can be performed by extrapolation of the
plots of ¥ and T against time by any desired function to obtain an
approximate value at the end of the next time interval. The other quan-
tities (x, x, X, y, ¥y, T, and 7) are then computed and the process
iterated. By this method, time-history plots of each of the nine vari-
ables are obtained. The present solutions were made, however, by the

Kutta 3 method (reference 10) which is more readily adapteble to the
autamatic computing machine used.
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APPENDIX B
REDUCTTON TO FIXED-TRIM CASE

One test of the validity of the free-trim equations 1s their
compatibility with the special, and well-eatablished, case of fixed-
trim impact. If, in equation (17), the trim is considered to remain
constant throughout the impact, all terms containing derivatives of
the trim are eliminated and the equation becomes

Ko(A ‘
P(8) [E?3&’sin27 cosSF + 12y°giner coshT(i cos T + x sin T)%] =
12 sin3T 6085T ' -

.

- Bl
e cos T ( )
which reduces to
mey Ko(4)y3y Kp(A)ye(F cos T + % sin 7)2 (82)
- = +
COo8 T 3 8in 71 COS3T sin T cos T
However,
*e dv .
se n
= Z = e——— B
cos T dt ( 3)
and
{
Vy=Fcos T+Xsin 7T , (BY4)

\

so that, by introducing equations (2), (B3), end (BL) into equation (B2),

av.
Ko(A)y3 —  xo(a)yv,?
Fn = + (B5)
38inT 0082T sin T cos T .

which corresponds to equation (22) of reference 1.
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Similarly, the right-ha.nd side of equation (20) is equal to the
moment about the center of gravity as in equation (3) and, if the trim
derivatives are set equal to zero in the left-hand side the equation
becomes

Kop(a)
60 sin'r cosdr

Eyhfi gin®r coser - 20&y3§i pindr cos®r +

20y3gin®T cosl"'r(ir cos T + x sin 7)2 -
3- cogk(3 L3 2| _ '
6an23:’gn T cos (¥ cos T+ X sin T) | = Meg (B6)

which reduces to

M. = Kp(a)y*¥ N Kp(A)y>(¥ cos T + x sin 'r) Ko(4)ay3y'
cg — -

12 s:Lne'r cos31' 3 sinz'r cos T 3 8in T COS3T

Kq)(A)ayQ(jr cos T+ x sin 1-)2
(BT)

sin T cos T

After equations (B3) and (B4) are substituted into equation (BT), the
moment becomes ’

KP(A) vy
cg = )

5 3 + y3cose*r(3'r cos T+ x sin -r){} - ‘
3 s8in“T cos’T .

av
Kpa)y3 == Ko(a)y?v,° |
a ' + (B8)

3 sin T cqs2'r sin Tcos T

and, by introducing equation (B5) and equations (9) and (11) of refer-
ence 3, equation (B8) becomes
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Kp(A) ¥4 . 2
Mg + oF, = 5|5+ @ + Ky cos ) (B9)
3 sin-T cos>T

where Ky is K 1in reference 3.

From equations (34) and (26) of reference 6 the moment about the
step is .

Mg = Mg + aFp (B10)

Substituting equation (B10) into equation (B9) gives the moment about
the step

4..
Ko(A ¥ ] .
= 2(4) Y + 73T + Ky cos 'r):2 (B11)

g =
3 s:Ln2T cos3T 4

which is identical with equation (16) of reference 6.

Equation (7) can also be reduced in this manner to give'
X =y tan 7 (B12)

In the fixed-trim condition the step motions and center-of-gravity
motions are the same. Equation (B12) is, therefore, equivalent to

"X =Y tan 7 (B13)

Equation (B13) can readily be deduced from figure 1(c).
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PHYSICAL CHARACTERISTICS OF FULL-SCALE HULL AND.

Begm, ft . .. .. ...

Forebody length, from centroid

| Over-all length, £t . . .
a (from centroid of step),
b (normal to keel), ft .
Weight, 1b , . . . . . . .

me, lb-sec®/ft . . . . .

Iogs lb-sec®-ft . . . . .
B, deg e o 6 o o o s o

EXPERTMENTAT. MODEL

of 'step, £t .

TABLE I

e« o & .

e & o o
.

o o o o

Full-scale
hull.

.. 6.33

. 19.11
. 35.67
2.28
6.06
14,000

434,78
19,410
20

l-SCALE

2

NACA TN'2698

Experimental

model

1
(72- - sca.le)

3.17
9.56
17.83
1.14
3.03

1,

50

5k.35

607
20



TABLE II

INITIAL CONDITIORS FOR TIME HISTORIES

Caga TIT

Case I Capgs IT
Experimantal Experimental
Theoretical (a) Theoratical (a) Theorstical
free and free and free and
fixed trim Free Fixed fixed trim Free Fixed fixed trim
} trim trim trim trim
Yos Tt 0 0 0 0 0 0 0
$os £t/8ec 11.5 1.5 13.9 . 10.8 10.8 9.5 19.1
¥,, Tt/sec/sec 0 .0 0 -5.8 -5.8 0 0
X, Tt 0 0 0 0 0 0 0
%o, ft/sec 120.4 120.h4 125.7 123.7 123.7 125.7 90.0
%o, Tt/sac/sec 0 0 0 0 0 0 0
_ 0.122 0.122 | o0.122 0.201 0.209 | 0.209 0.0%2
0¥ deg 7.0 7.0 7.0 11.5 12.0 12.0 3.0
Tos radians/sec 0 0 | cmemaa- 0 0 ————— 0
'1’0,/ radians/eec/sac . 0 0 | mem——— 0 0 | memme—- 0
Yos deg 5.4 5.4 6.2 5.0 5.0 L.b 12.0
SExperimental values chenged to full-gcale. E'

M7

8692 NI VOVN
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Undisturbed
water surface

(a) Sketch of float during impact.

74
p N ve
Q‘-S X
(b) Velocity com@onents; (c) Components of center-of-gravity

acceleration.

Figure 1.~ Schematic representation of impact.
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o - Figure 2.~ Coﬁparison of theoretical free-~trim and fixed-trim float
motions,
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Figure 2.~ Continued.
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(a) Case I; T = 7.0° or 0.122 radian; 7o = 5.4°,

Figure 3.~ Comparison of experimental free-trim and fixed-trim float

motions.,
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